Robustness of Model-Based Risk Reduction Strategies

Julian Richardson RIACS, NASA Ames Research Center julianr@riacs.edu

Daniel Port
University of Hawaii
dport@hawaii.edu

Martin Feather

Jet Propulsion Laboratory, California Institute of Technology Martin.S.Feather@jpl.nasa.gov

This research was carried out at the NASA Ames Research Center, the University of Hawaii, and the Jet Propulsion Laboratory, California Institute of Technology, partly under a contract with the National Aeronautics and Space Administration and partly supported by JAXA

Introduction

- Models can predict effect of future actions; used to make decisions:
 - more reliably than human judgement,
 - more flexibly than fixed processes
 - e.g. use of COCOMO II or other software cost models is mandatory at NASA (NPR 7150.2)
- Risk reduction (including V&V) is critical and expensive part of projects
- Improvements in risk reduction can save money and/or reduce risk
- Model-based choice of risk reduction strategies:
 - 1. Quantify risk in each risk category
 - 2. Quantify cost and risk reduction for each technique
 - 3. Choose optimal combination of risk reduction techniques
- Q: How much does effectiveness of chosen strategy depend on accurate quantification of risks & mitigations?
 - ran sensitivity analysis experiments for different optimization strategies
- A: Not much
 - optimized strategy nearly always beats any fixed strategy

Optimizing Risk Reduction

- We consider here two different algorithms
- Strategic Method (Port, Kazman et al)
 - employed with JAXA case studies
 - algorithm gives provably optimal risk reduction strategies
 - as long as assumptions hold
 - well suited to independent V&V (IV&V)
- Defect Detection and Prevention (Cornford & Feather)
 - design-level identification and mitigation of system/software risks
 - developed at JPL, used for many NASA mission technologies
 - rapid elicitation of relationships between objectives, risks, mitigations
 - risks harm objectives,
 - · mitigations reduce risks
 - uses a standard of heuristic search (simulated annealing) to make nearoptimal selections from among dozens – hundreds of mitigations

Strategic Method

• Inputs:

- loss potential and probability for each attribute (risk)
- cost and reduction in loss probability applying each technique to each attribute

Attribute (i)	A1	A2	A3	A4
Loss potential for Ai	100	90	90	80
P _{before} (Ai)	6	5	20	15

Cost / resultant loss probability Assessing Ai with Tj	A1	A2	A3	A4
T1	50 / 4	NA	10 / 15	70 / 12
T2	100 / 6	NA	NA	100 / 13
T3	NA	NA	80 / 15	80 / 12

• Output:

optimal order to apply techniques to attributes for any budget

	Attribute	Technique	RE Change	Cost	СВ	risk reduction	cumulative cost
У	None	None	None	None	None	15700	0
	A13	T11	4050	10	405	11650	10
	A7	Т9	500	3	166.667	11150	13
	A11	T11	1500	10	150	9650	23

Risk Reduction vs Cost

- Graph on right plots risk exposure vs cost for various strategies.
- The benefit provided by strategy is its risk reduction.
- Better strategies
 produce more benefit for given cost → have lower curves.

DDP

- Inputs:
 - amount (0 ≤ impact ≤1) by which each risk reduces each objective
 - amount (0 ≤ effect ≤1) by which each mitigation reduces each risk
 - cost of each mitigation
 - total budget
- Output:
 - heuristically optimized (maximal attainment of objectives) selection of mitigations for that budget

This is the topology of the connections for an actual application of DDP – note that associated with each line is the amount (impact or effect):

DDP method results

58 mitigations = 2^{58} (approx 10^{17}) ways of selecting: searches using "simulated annealing", extended across entire cost range to reveal cost/risk tradespace

Need for Sensitivity Analysis

- Algorithms optimize strategy selection given knowledge of magnitudes and costs of risks and mitigations.
- Hard to know these things in advance –
 does (in)accuracy effect validity of decisions
 reached by applying these algorithms?

Questions:

- 1. How much does effectiveness of chosen strategy depend on accurate quantification of risks & mitigations?
 - experiments to vary actual from specified effectiveness or risk
- 2. How much does optimized strategy improve on fixed* strategy?
 - experiments evaluate difference between optimized strategy, and each of four kinds of fixed strategy (a) random, (b) "reasonable", (c) cheapest, (d) "great" (optimal for nominal risk levels)
- * Fixed strategy = for a given budget, a predetermined selection of mitigations that is the same no matter the problem

Sensitivity wrt Effectiveness Matrix

- Knowledge of risk or technique effectiveness is often uncertain.
- Compute effectiveness matrix: effectiveness of technique T_i on attribute A_i , $\rho^0_{ij} = (P_{before}(A_i) P_{after}(A_j, T_i))/P_{before}(A_j)$

1. Repeatedly:

- a) Pick fixed budget $b \in \{50,100,150,200,250,300,350,400\}$
- b) Pick noise level $\sigma \in \{0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0\}$
- c) N (=1000) times:
 - i. Add noise to effectiveness matrix: $\forall i, j, \rho_{ij} = ||\rho^0_{ij} + N(0, \sigma^2)||$
 - ii. Evaluate %age difference between S_{opt} and S_{fixed} , Δ =($\delta RE(b, S_{fixed})$ $\delta RE(b, S_{opt})$)/ $\delta RE(b, S_{opt})$
- d) Add a point to the plot with x coordinate σ , y coordinate the mean value of Δ , and if desired add error bars to that point to indicate the standard deviation in Δ

Results

- Optimized strategy:
 - significantly better than random strategy
 - significantly better than cheapest strategy
 - even for inaccurate knowledge of effectiveness or risk

Comparison with Optimal Fixed Strategy

- Strategic Method adapts strategy to risk profile
 - maybe we could just optimize once, for typical risk profile?
- 1. Use Strategic Method to calculate optimal strategy S_{fixed} given loss potentials, L_i for each attribute A_i
- 2. For each L_j randomly choose L_j from $\{0, L_j, L_j \times 1.5\}$
- 3. Use Strategic Method to calculate optimal strategy S_{opt} for perturbed loss potentials
- 4. Perform sensitivity analysis wrt effectiveness matrix as before

Results

- Graph shows result from a typical choice of perturbed loss potentials.
- Optimal significantly better than 'great'
- Fixing a strategy to that which is optimal for a typical risk profile is usually inferior to an optimization based on the estimated risk profile, even in the face of inaccuracies in those estimates.

Sensitivity analysis of DDP

- DDP uses different optimization algorithm (simulated annealing) and different calculation of risk reduction.
- Strategic method experiments repeated with DDP* conclusions for Strategic Method hold for DDP too:

^{*}DDP changed to allow fractional application of the final V&V strategy, as per Strategic Method

Conclusions

- Sensitivity analysis of strategic method and DDP wrt knowledge of technique effectiveness and risk reduction
- Optimized strategy <u>is</u> better than alternatives even when significant uncertainty exists in estimates of effectiveness and risks.

- Significant cost reductions or risk reductions are achievable:
 - 1. Estimate magnitude of risks + effectiveness & costs of available mitigations.
 - 2. Choose optimal strategy (e.g. using Strategic Method).